OpenUBA: A SIEM-agnostic, Open
Source Framework for Modeling User
Behavior
May 25. 2020

Jovonni L. Pharr
jpharr2@student.gsu.edu
Atlanta, GA, USA
[v0.0.1]

Abstract

This project describes a system for analytic modeling of user & entity behavior. We
make use of the scientific computing community, and the tools used within it. We
demonstrate conditions under which modeling invocation takes place, the handling of
model results, and a description of model components. Version control is also described
for models changing over time. Feedback is described for both rules, and models. Effi-
cient system storage is also demonstrated for anomalies, and events of interest. Various
risk calculation approaches are also described. The system takes advantage of turing-
completeness for model development, instead of limited development freedom. Lastly,
different scenarios in which models, and rules accept feedback are covered. The com-
ponents described construct a UBA system designed to be extensible, powerful, and
open.

OpenUBA: A SIEM-agnostic, Open Source Framework for Modeling User Behavior

Motivation

There exists several security monitor-
ing tools focused on providing User and
Entity behavior monitoring capabilities.
UBA tools attempt to replace a SIEM so-
lution, but the two tools should work to-
gether. Security Operation Centers (SOC)
should not be forced to choose between
SIEM solution, and a UBA solution. Al-
though, there are STEM solutions releasing
their own UBA features, however, there is
a difference between a flexible, and expres-
sive UBA tool, and adding a UBA feature.

1.1 Problems

Many UBA platforms take a "block
box" approach to modeling. The very
concept of modeling can vary across UBA
tools, though more concretely defined in
mathematics. Often UBA vendors claim
their models are IP, which is an under-
standable business decision to make. How-
ever, ramifications of models being pro-
prietary include vendor lock-in, decreased
model developer-friendliness, and hinder-
ing community growth & participation.

"

Also, some SOCs must use multiple
tools to gain the benefits of UBA, but this
can be expensive depending on the vendor.
OpenUBA [1] aims to solve these problems
by providing

—_

. Open/"white box" model standard

2. SIEM-agnostic

3. Turing-complete, expressive modeling
4. Model feedback from cases

5. Model versioning

6. Lightweight architecture

7. Alerting

Modeling

UBA tools use an overarching concept
of a model M. A model can be an ar-
bitrary set of commands, of which change

the state of the system. Models may ex-
ecute both stochastic, and deterministic
sets of computations. With the depth, and
breadth of security use cases, model devel-
opment in any modern UBA tool should
be turing complete, and fully expressive.
UBA tools attempt to extend a flexible
model development practice, but because
it typically results in less than turing com-
pleteness, model development is inherently
limited, although expressive.

2.1 Mapping Mitre Att&ck

Mapping to the Mitre Att&ck matrix
is important for SOCs to monitoring their
own performance with respect to under-
standing their coverage and security pos-
ture. Models from the model library are
mapped to Mitre Att&ck techniques and
tactics. This enables coverage with respect
to Mitre Attack to be calculated across the
model population. This is becoming com-
mon practice for security tools, as Mitre
maintains an industry leading position on
standardizing attack vectors, and surfaces
for the purpose of organizations using a
"common language" — this mapping is ar-
bitrary.

2.2 Defining models

We define an abstraction of a model,

M ={(m, A\, 3)| Spin <8< Spax} (1)

Where m is a mitre map, A is the
merkle root hash from the model compo-
nent tree, s is the contributing risk score
for the model, and S is the system’s global
risk score limits. Each model has a relation
to a mtechniquea and Mrtactic-

Models run in model groups, which
may contain > 1 model. We define the
model execution function,

= = execute(M) (2)

which is a function mapping a carte-
sian product of the set of models, and the
set of datasets in the system.

OpenUBA: A SIEM-agnostic, Open Source Framework for Modeling User Behavior

= MxD—=r (3)

Where 7 is a model result, and D is
set of data in the system, and d € D, the
subset of data used by the execute func-
tion. Model results can be a set of rela-
tions between a user U, and s, given s is
between Spin, and Sp.x. Such a relation
can be "U has new risk score of ", "U has
their risk score increased/decreased by S",
or another arbitrary risk score calculation.

2.3 Model Library

We make use of a model registry, from
which models are installed for use in the
system. A model registry can be arbitrary,
but must be trusted by the user, although
models are verified before installation, and
usage.

2.3.1 Components

Models are constructed by > 1 component.
Components at a high-level are files. Model
library entries contain the file hashes, and
encoded-data hashes of each component.

{(Ctypevf7d) : C#@,VOG C} (4)

Where f is the file, and d is the en-
coded data. A model component contains
a set of hashes,

H = {H(f),H(d)| f#0,d# 0} (5)

where H is a hash function, and f, and
d must be present. Together, these form
the model component.

¢ = {(ctype, H)} (6)

2.4 Common Modules

For a given model, the model author may
be required to rewrite a basic preprocessing
step for a model, of which may differ de-
pending on details of how the model is be-
ing used. For this reason, we extend com-
mon model modules to be used by models.

For example, if a model needs to parse in-
coming data a certain way, the logic can
be encapsulated inside of an external mod-
ule, and invoked by the model, not written
within the model itself.

2.4.1 Verification

Model verification takes one of two forms,
the system is either verifying the contents
from the model library, before installing,
or verifying the files the model uses, after
being installed, but prior to each execution
of the model.

Both verification functions, verifying
the encoded data of the model

Vd : Cdata — {Oa 1} (7)

and verifying the files the model use

Vf : Cfile — {0, 1} (8)

maps an element of the component
to a truth value. Overall verification is
the logical conjunction of both verification
types, and is represented by the boolean
expression

V:=V,Vy (9)

We represent the model invocation
function as

® = invoke(...) (10)
install(M), T'=d
Err, otherwise
(11)

Using the data and file verifications,
we construct the simple verification condi-
tions to be satisfied before model invoca-
tion. Invocation occurs if the verification
function, V'

ifv

otherwise

(I, M),

V(M) = {EH (12)

OpenUBA: A SIEM-agnostic, Open Source Framework for Modeling User Behavior

In addition to installation verification,
the same process is executed upon each
model execution. This ensures the in-
tegrity of the models are checked prior to
running the model.

2.5 Model Groups

Model groups are sets of models to run with
a shared context, and shared datasets. We
define executing over model groups by

Ty = E(Mgroupiij) ‘Vi,j, € Mnabied
(13)
given that M is enabled, where M is
the model configuration, of which defines
the group.

2.5.1 Data Loaders

A data loader provides models with the
data needed to execute, and any contextual
information needed for the model. Context
for a model may be the host information if
remotely connecting to a data source, or
the location of the data source.

If a system has n models enabled for
proxy data, data should be loaded at most
one time for the model group. The amount
of times the same data is loaded, Dy, is

group

not proportional to the number of models,

(M.

Dy

group

* [M[, M € Mgroup (14)

Data loaders enable model groups to
share the data used to model.

2.6 Model Return

Model return types are defined at model
configuration time.

p = resultiy,e (15)
and the set of result types is
pi= {UriskyUanoma Un} (16)

For a return type of U,k

{ulnew’ "'u”ne'w}’ if P = Upisk
Mies = S {ug, . un}y if p=TUsnom
Err, otherwise
(17)

where wuy, , is either the new risk
score for user, u, or the risk score to be
used for new risk score calculation.

2.7 Sequence Models

M can be a single-fire model, or a se-
quence of individual models. Single-fire
models perform their logic on the input
data, and return a result. Single fire mod-
els are markovian, meaning that the state
of the system after Z(M) is only depen-
dent on the current state, and the state
transition initiated by invoking =.

Sequence models depend on outputs
from previous models. One approach is to
directly feed the output from a model into
the input of another model. However, we
abstract the connection between models by
memoizing model outputs.

The timing of sequence model execu-
tions is not always immediately after an-
other. Therefore, it is efficient to memo-
ize prior model output. This approach en-
sures the length of the time window used
during model training/inference can be up
to the length of the system historical win-
dow. In other words, we can store mem-
oized model outputs, and condition upon
them at model execution time.

2.8 Model Versioning

If there exists a model where the model
version is the maximum version number in
the set of model versions, the system will
infer on that model by default. Given a set
of all model versions, Myers

Mvers = {vlan; cee Un| Mv 2 O,V’U}
(18)

OpenUBA: A SIEM-agnostic, Open Source Framework for Modeling User Behavior

IM 3 max(Myers) = M, = E(M,)
(19)
This prevents multiple versions of the
same model from executing, especially
while running on the same data.

2.9 Rules

Traditionally, a rule engine within a SIEM
contains a set of conditions. The engines
use event data to check against these rules.
With OpenUBA, an entire rule engine can
be defined within a standalone model. This
rule engine executes within a model group,
and can output risk scores similar to a tra-
ditional model. This approach enables rule
engines to be used in the same way models
are used.

2.10 Storage

Another issue with current-state UBA
tools is the requirement to store a copy of
production data in such a way where the
tool can access it. This forces UBA users
to eventually copy large amounts of data.
Although UBA tool tend to delete data be-
yond a specified time window, copying the
data alone can be challenging for users with
large amounts of data.

To be lightweight, and "siem-
agnostic", we store the anomaly data, and
supporting events within a specified time
window. This way, the system can still
execute on production data, but without
the requirement to retain all of the data
on disk, or in memory.

If an enterprise proxy log source can
result in 1B record on a given day, which
in turn generates 50,000 proxy anoma-
lies, retaining 50, 000 records on disk is far
more efficient than copying the full set of
data. This constraint makes the system
more lightweight than a traditional bloated
SIEM, or UBA system. The number of
stored events, estoreq is much less than the
number of observed events e pserved

€stored K €observed (20)

If specific models call for sequence of
events to occur within an interval of time,
[t*,t], we can efficiently retain the poten-
tially anomalous event for up to t — A,
where A is the amount of time into the past
the system can observe an event — typically
this is 90 days in traditional STEM prod-
ucts.

However, this data storage configura-
tion is arbitrary because at any point in
time, we can store the anomaly data in an
external abstract data store, and a model
can simply retrieve it from outside the sys-
tem, similar to how models retrieve the
data used during computation.

Logs

We process logs for both creating
users, and entities, and for model execu-
tion. Although the process by which the
data is processed is the same, the intent is
different between the two.

process(i, j), Vi, j (21)

3.1 ID Feature

For each log source, a feature to be used as
an identifier is configured. The identifier
should server as a common key across all
log sources, or must be a subset of another
key. This identifier makes it less costly to
decipher the attributing account for any e,
not that it cannot be done otherwise.

3.2 Dormancy

Dormancy is determined by the lack of a
subset of e in D,; the dormancy period is
arbitrary. If exactly 0 events from precon-
figured events, e4orm, are found within the
logs of u, we say u is dormant.

Udorm = {U | Yu € U7 Cdorm ¢ Du} (22)

Risk

Risk scores can not only be arbitrary,
but can also mislead or confuse stakehold-

OpenUBA: A SIEM-agnostic, Open Source Framework for Modeling User Behavior

ers. "Black box" risk calculations hinder
SOCs from fully understanding how case
generating anomalies are precisely scored,
and their ability to concretely explain the
calculations to third parties. There is
an inherent tradeoff between interpretable
risk scores, and the determinism of risk
score calculation. The more a model uses
stochastic, and more complex processes to
calculate risk scores, the more SOC ana-
lysts lose granular explainability of risk re-
sults.

The philosophical concept of a risk
score is subjective as well, and is designed
for human intuition. This goal can be
hindered by arbitrary vendor-driven risk
score calculations, of which decrease in-
terpretability of model outputs. In data
science, there exists an accuracy vs inter-
pretability tradeoff. As more complexed
models are invented, of which increase in
performance, we lose human intuition on
the inner workings of the model. This jus-
tifies enabling SOC teams to transparently
define their risk score calculation logic as
much as possible — hiding concrete risk
score logic only harms day-to-day SOC de-
cision making, and requires a great deal of
trust from the SOC onto the vendor.

4.1 Risk Calculation

We purposefully abstract the risk cal-
culation, and demonstrate basic risk score
calculations for an individual, and a group.
If a model results in new user risk score, we
can simply overwrite the users risk.

Uriskir1 — Tu (23)

If a model results in s quantity of risk
to be used in the final calculation of risk
for U, then the abstracted risk score calcu-
lation process is invoked using the quantity
of risk as an input variable. For example,
if the risk calculation for users is a sum-
mation between the previous risk score of
u, and the model output with respect to u,
then

(24)

Urisk; 1 — Urisks 1 + 1y

We define an abstracted risk calcula-
tion function, and map over all users

Urisk = Y(u, risk(u,t), M2),Yu € U
(25)
~ is a cartesian product of the user
set, and two real numbers, and yields a real
number, representing a new risk score for
user, u.

vyiux RxR =R (26)

For simple risk score calculations, the
function does not need u, however, the sys-
tem can consider a user’s profile as context
during risk calculation, opposed to a risk
score being independent of u.

Case Feedback

Upon a SOC analyst providing feed-
back to a model, the models adjust internal
logic in some meaningful way. Feedback
into a model differs in several ways depend-
ing on properties of the model. However,
feedback on a rule, must be separated from
feedback to a model.

5.1 Model Feedback

Model feedback usually does not include a
change in semantic or syntactic forms be-
cause model parameters usually change af-
ter feedback — although additional feature
selection, or preprocessing may also change
after feedback.

1. Tuning
(a) changing parameters in a model
2. Remodeling

(a) rewriting, or editing the underly-
ing model structure

The feedback process used is mainly
for parameter tuning, but more work is to
be done on automatically remodeling based
on feedback. For a simple statistical model
such as

OpenUBA: A SIEM-agnostic, Open Source Framework for Modeling User Behavior

if user a triggers rule R
S standard deviations from ’normal’

if a result was a false positive, the
model would include the false positive met-
ric in its calculation for standard deviation,

o(x).

5.1.1 Weighting

Model feedback can also be weighted.
Instead of o(z) just having the case-
generating event included within its cal-
culation, the function could also apply a
weight, [0, 1], of which can damp the feed-
back. Damping can be done on several
variables, including the amount of times
the case has been deemed a false positive,
or accepted behavior by the SOC.

5.2 Rule Feedback

Rule feedback may look differently from
model feedback. Rule feedback may re-
quire metaprogramming of the actual rule,
or changing a portion. Feedback to a model
for a rule such as

if eventtype = A
may become

if eventtype ==
and if eventtype ==

after feedback. In other words, feed-
back on rules can change the syntactic form
of the rule, or the semantic form, such as
variables. Each model defines its own pro-
cess through which the model interprets
feedback given on the case generated.

Future Work

Herein, we have demonstrated an
"Open Model" UBA solution for monitor-
ing users and entities. Once systems like
OpenUBA are implemented, macro-level
SOC activities can be performed using the
system’s data, and the community data.
Several threat feeds exists today, but lit-
tle to none exists with a focus on analytics,

and modeling insights from current threats.
Sharing hyperparamaters to fine tune a
shared security model on most recent Bot-
net activity is possible when "Open Model"
solutions are used more widely.

6.1 Shared SOC

A SuperSOC consists of a set of small
SOCs, all with their own people, processes,
and data. SuperSOCs enabled multiple
distributed SOCs to function as one or-
ganism regarding security threat modeling,
and security analytics.

6.2 Distributed Intel

Having community driven intel is not un-
common in several security circles. Iso-
lated, analytics-driven security tools hin-
der SOCs from building truly knowledge-
driven analytic solutions by removing the
community participation. More work is to
be done in this space.

6.3 Cross-SOC models

SOCs can also begin to collaboratively
model security use cases. For example,
knowing how anomalous this proxy traffic
for a user in your organization, is differ-
ent when compared to other companies in
the same industry. Intersoc collaboration
is still an active area of research.

References

[1] Georgia Cyber Warfare Range
OpenUBA, http://openuba.org

	Motivation
	Problems

	Modeling
	Mapping Mitre Att&ck
	Defining models
	Model Library
	Common Modules
	Model Groups
	Model Return
	Sequence Models
	Model Versioning
	Rules
	Storage

	Logs
	ID Feature
	Dormancy

	Risk
	Risk Calculation

	Case Feedback
	Model Feedback
	Rule Feedback

	Future Work
	Shared SOC
	Distributed Intel
	Cross-SOC models

